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ABSTRACT
Trend renewal processes (TRPs) were introduced by Lindqvist (1993) as a time-
transformed renewal process. After a brief introduction to TRPs with possibly some
new results, independent ordinary renewal processes (ORPs) and TRPs are com-
pared with respect to some stochastic orderings between the generating inter-arrival
time random variables, like, the usual stochastic order, hazard rate order, likeli-
hood ratio order and variability order, and on the basis of the trend function. Some
illustrations are given.
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1. Introduction

Stochastic orders have been a topic of study in many areas of probability and statistics,
like reliability theory, life-testing, actuarial science. Using properties associated with
distribution functions (dfs), density functions, hazard rates and whatnot, many useful
stochastic orders have been defined and these give insights into the relationships among
classes of random variables (rvs) with specified properties. This has attracted a great
amount of research problems in recent decades in the area of stochastic comparison of
random variables. We have referred Shaked and Shanthikumar (2007), Nair, Sankaran
and Balakrishnan (2018), Ravi and Prathibha (2012), Szekli (2012), and references
therein for stochastic orders. Definitions used in this article are given in Appendix for
ease of reference.

In this article, we look at the comparison of an ordinary renewal process (ORP) with
a trend renewal process (TRP), and two independent TRPs on the basis of properties
of the corresponding inter-arrival time distribution and the trend function. Section 1.1
is a brief introduction to TRP wherein some possibly new results are stated and proved.
Section 2 contains the main results and Section 3 has some illustrative examples.
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1.1. Trend Renewal Process (TRP) - an Introduction

Let λ(t), t ≥ 0, be a non-negative continuous function, Λ(t) =
∫ t
0 λ(u)du < ∞, t ≥

0, with Λ(∞) = ∞. With {Tn, n ≥ 0}, T0 = 0, denoting the sequence of event/
failure/ arrival time, henceforth arrival time, and NF,λ(t) = max {n : Tn ≤ t}, the
counting process {NF,λ(t), t ≥ 0} or the sequence {Tn, n ≥ 0} is called a trend renewal
process (TRP) with renewal df F and trend function λ, if the time-transformed process
{Λ(Tn), n ≥ 0} is an ORP with renewal df F, that is, if the random variables (rvs)Wi =
Λ(Ti) − Λ(Ti−1), i ≥ 1, known as transformed working times in reliability literature,
are independent and identically distributed (iid) rvs with df F, with the assumption
that F (0) = 0. If λ(t) = 1, t ≥ 0, then Λ(t) = t, t ≥ 0, and {NF,1(t), t ≥ 0} is
an ORP generated by the df F, which we write as {NF (t), t ≥ 0} . We denote TRP
with F = Exp(µ), the exponential df with mean µ > 0, as {NE,λ(t), t ≥ 0} . With
λ(t) = 1, t ≥ 0, {NE,1(t), t ≥ 0} is a Poisson process (PP) with rate 1

µ , which we write

as {NE(t), t ≥ 0}. Note that {NE,λ(t), t ≥ 0} is a counting process with independent
increments.

Lindqvist (1993) introduced and studied TRPs initially. Further, the TRP was in-
vestigated by Lindqvist et al. (2003) for statistical analysis of repairable systems.
The challenge of calculating unknown trend parameters of a TRP in the scenario
when its renewal distribution is unknown was examined by Jokiel-Rokita and Magiera
(2012). Franz, Jokiel-Rokita, and Magiera (2014) investigated the issue of predicting
a TRP’s next failure time while the process’s renewal distribution is unknown. A non-
parametric estimation technique for TRP was devised by Saito and Dohi (2016) in
cases where the failure rate function’s form in the ORP is unknown.

Since Λ(·) is non-decreasing, we have

P (NF,λ(t) ≥ n) = P (Tn ≤ t)

= P (Λ(Tn) ≤ Λ(t))

= P

(
n∑

i=1

(Λ(Ti)− Λ(Ti−1)) ≤ Λ(t)

)

= P

(
n∑

i=1

Wi ≤ Λ(t)

)
= F (n)(Λ(t)), t ≥ 0,

where F (n) is the n-fold convolution of F with itself.
We now state and prove a few results some of which may be new. Here

d
= denotes

equality in distribution.

Lemma 1.1. NF,λ(t)
d
= NF (Λ(t)), t ≥ 0.

Proof. For t ≥ 0, we have P (NF,λ(t) ≥ n) = F (n)(Λ(t)) = P (NF (Λ(t)) ≥ n) , n ≥ 1,

so that NF,λ(t)
d
= NF (Λ(t)), t ≥ 0.

Remark 1. More renewals occur in a TRP than in an ORP, generated by the same
baseline df F , during [0, t], t ≥ 0, when the trend function λ(t) > 1, t ≥ 0. Because, the
inequality λ(t) > 1, or equivalently, Λ(t) > t implies that P (NF (Λ(t)) ≥ NF (t)) = 1,
or equivalently, P (NF,λ(t) ≥ NF (t)) = 1 using Lemma 1.1.

24



Asian Journal of Statistical Sciences S. Ravia and Suman Kalyan Ghoshb

Note that PP has independent and stationary increments and the following three
results look at similar properties for a TRP with exponential baseline distribution.

Lemma 1.2. The distribution of NE,λ(t) is given by P (NE,λ(t) = n) =

e−
Λ(t)

µ

(
Λ(t)

µ

)n

n! , n ≥ 1, t ≥ 0.

Proof. Let {NE(t), t ≥ 0} be a PP with rate 1
µ . Then P (NE(t) = n) = e−

t

µ

(
t

µ

)n

n! .

By Lemma 1.1, NE,λ(t)
d
= NE(Λ(t)), t ≥ 0. Therefore, P (NE,λ(t) = n) =

P (NE (Λ(t)) = n) = e−
Λ(t)

µ

(
Λ(t)

µ

)n

n! .

Lemma 1.3. {NE,λ(t), t ≥ 0} has independent increments.

Proof. Let 0 = t0 < t1 < . . . < tn, n ≥ 1 be arbitrary time points so that 0 = Λ(t0) <
Λ(t1) < . . . < Λ(tn), as Λ(·) is a non-decreasing function. Hence, by the properties of
PP,

NE(Λ(t1))−NE(Λ(t0)), NE(Λ(t2))−NE(Λ(t1)), . . . , NE(Λ(tn))−NE(Λ(tn−1))

are independent rvs. By Lemma 1.2,

NE,λ(t1)−NE,λ(t0), NE,λ(t2)−NE,λ(t1), . . . , NE,λ(tn)−NE,λ(tn−1)

are independent rvs which implies that the process {NE,λ(t), t ≥ 0} has independent
increments.

Lemma 1.4. {NE,λ(t), t ≥ 0} has stationary increments iff Λ(t) =
∫ t
0 λ(u)du is a

linear function.

Proof. By Lemma 1.2 and the stationary increments property of PP, we have, for
0 < t1 < t2, 0 < s,

P (NE,λ(t2)−NE,λ(t1) = n) = P (NE(Λ(t2))−NE(Λ(t1)) = n)

= e−
Λ(t2)−Λ(t1)

µ

(
Λ(t2)−Λ(t1)

µ

)n
n!

, (1)

and

P (NE,λ(t2 + s)−NE,λ(t1 + s) = n) = P (NE(Λ(t2 + s))−NE(Λ(t1 + s)) = n)

= e−
Λ(t2+s)−Λ(t1+s)

µ

(
Λ(t2+s)−Λ(t1+s)

µ

)n
n!

. (2)

For stationary increment property to hold for the process {NE,λ(t), t ≥ 0}, it is enough
to show that (1) = (2) or, equivalently,

Λ(t2 + s)− Λ(t1 + s) = Λ(t2)− Λ(t1), 0 < t1 < t2, 0 < s. (3)

But (3) holds iff Λ(t) =
∫ t
0 λ(u)du is a linear function, as shown below.

If Λ(·) is a linear function, then Λ(t2 + s)−Λ(t1 + s) = Λ(t2) +Λ(s)−Λ(t1)−Λ(s) =
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Λ(t2)−Λ(t1). Conversely, let (3) hold for all 0 < t1 < t2 and 0 < s. If possible, let Λ(·)
be a non-linear function so that Λ(t + s) ̸= Λ(t) + Λ(s) for some t > 0, s > 0. Then
there exists 0 < t1 < t2 and 0 < s for which Λ(t2 + s)− Λ(t1 + s) ̸= (Λ(t2) + Λ(s))−
(Λ(t1) + Λ(s)) = Λ(t2)− Λ(t1), contradicting (3). Hence the proof.

Remark 2. Λ(·) is a linear function iff {NE,λ(t), t ≥ 0} is a PP.

Remark 3. We observe that a TRP with exponential baseline distribution
{NE,λ(t), t ≥ 0} is a non-homogeneous Poisson process with intensity function λ(t)
(Lindqvist et al., 2003).

2. Main Results

The following result characterizes comparison of transformed inter-arrival times of two
independent TRPs based on stochastic ordering. Two corollaries to this give the same
under hazard rate and likelihood ratio orderings.

Theorem 2.1. If the transformed inter-arrival times of a TRP {NF,λ1
(t), t ≥ 0} are

larger (smaller) than those of another independent TRP {NG,λ2
(t), t ≥ 0} in the usual

stochastic order with λ1(t) ≤ (≥)λ2(t), t ≥ 0, then NF,λ1
(t) ≤st (≥st)NG,λ2

(t), t ≥ 0.

Proof. If {NF,λ1
(t), t ≥ 0} is a TRP with renewal df F and trend function

λ1(·), then P (NF,λ1
(t) ≥ n) = F (n)(Λ1(t)), where Λ1(t) =

∫ t
0 λ1(u)du. Similarly,

P (NG,λ2
(t) ≥ n) = G(n)(Λ2(t)), where Λ2(t) =

∫ t
0 λ2(u)du, and G(n) is the n-fold con-

volution of G with itself. Let the transformed inter-arrival times of {NF,λ1
(t), t ≥ 0}

be larger (smaller) than those of another independent TRP {NG,λ2
(t), t ≥ 0} in the

usual stochastic order with λ1(t) ≤ (≥)λ2(t), t ≥ 0. Then, for x ≥ 0,

F̄ (x) ≥ Ḡ(x) ⇔ F (x) ≤ G(x)

⇒ F (n)(x) ≤ G(n)(x), n ≥ 1.

Therefore, F (n)(Λ1(t)) ≤ G(n)(Λ1(t)), n ≥ 1, t ≥ 0. Now, for t ≥ 0,

λ1(t) ≤ λ2(t) ⇒ Λ1(t) ≤ Λ2(t)

⇒ G(n)(Λ1(t)) ≤ G(n)(Λ2(t)), n ≥ 1

⇒ F (n)(Λ1(t)) ≤ G(n)(Λ1(t)) ≤ G(n)(Λ2(t)), n ≥ 1

⇒ F (n)(Λ1(t)) ≤ G(n)(Λ2(t)), n ≥ 1

⇒ P (NF,λ1
(t) ≥ n) ≤ P (NG,λ2

(t) ≥ n) , n ≥ 1,

⇒ NF,λ1
(t) ≤st NG,λ2

(t),

completing the proof.

Corollary 2.2. The converse of Theorem 2.1 is not true.

Proof. We have λ1(t) ≤ λ2(t), t ≥ 0 ⇒ Λ1(t) ≤ Λ2(t), t ≥ 0, and,

NF,λ1
(t) ≤st NG,λ2

(t), t ≥ 0 ⇒ P (NF,λ1
(t) ≥ n) ≤ P (NG,λ2

(t) ≥ n) , n ≥ 0, t ≥ 0,
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so that with n = 1, we get

F (Λ1(t)) ≤ G(Λ2(t)), t ≥ 0.

However this does not necessarily imply that F (x) ≤ G(x), x ≥ 0. As there may exist
dfs F and G such that F (x) ≥ G(x), x ≥ 0 as well as F (Λ1(t)) ≤ G(Λ2(t)), t ≥ 0.
This is justified as F (x) ≥ G(x), x ≥ 0 ⇒ F (Λ1(t)) ≥ G(Λ1(t)), t ≥ 0, and, Λ2(t) ≥
Λ1(t) ⇒ G(Λ2(t)) ≥ G(Λ1(t)), t ≥ 0. Hence there exist two possibilities:

(i) F (Λ1(t)) ≥ G(Λ2(t)) ≥ G(Λ1(t)), t ≥ 0, and
(ii) G(Λ2(t)) ≥ F (Λ1(t)) ≥ G(Λ1(t)), t ≥ 0.

Corollary 2.3. If the transformed inter-arrival times of a TRP {NF,λ1
(t), t ≥ 0} are

larger (smaller) than those of another independent TRP {NG,λ2
(t), t ≥ 0} in the hazard

rate order with λ1(t) ≤ (≥)λ2(t), t ≥ 0, then NF,λ1
(t) ≤st (≥st)NG,λ2

(t), t ≥ 0.

Proof. The proof follows using the stochastic ordering relationship: X ≥lr Y ⇒
X ≥hr Y ⇒ X ≥st Y and Theorem 2.1.

Corollary 2.4. If the transformed inter-arrival times of a TRP {NF,λ1
(t), t ≥ 0}

are larger (smaller) than the transformed inter-arrival times of another independent
TRP {NG,λ2

(t), t ≥ 0} in the likelihood ratio order with λ1(t) ≤ (≥)λ2(t), t ≥ 0, then
NF,λ1

(t) ≤st (≥st)NG,λ2
(t), t ≥ 0.

Proof. The proof follows using the stochastic ordering relationship: X ≥lr Y ⇒
X ≥hr Y ⇒ X ≥st Y and Theorem 2.1.

The following result gives comparison of two independent TRPs with respect to
stochastic ordering.

Theorem 2.5. Consider two independent TRPs {NF,λF
(t), t ≥ 0} and

{NG,λG
(t), t ≥ 0} such that the trend function is equal to the hazard function

corresponding to the respective renewal distribution. Then the transformed inter-
arrival times of {NF,λF

(t), t ≥ 0} are larger (smaller) than those of {NG,λG
(t), t ≥ 0}

in the usual stochastic order iff NF,λF
(t) ≤st (≥st)NG,λG

(t), t ≥ 0.

Proof. We give the proof for stochastically larger relationship and the other proof
is similar. For the TRP {NF,λF

(t), t ≥ 0} , since the trend function λF is the hazard
function corresponding to the renewal distribution F , we have

λF (t) =
f(t)

F̄ (t)
=

d

dt
(− ln F̄ (t)) ⇒ ΛF (t) =

∫ t

0
λF (u)du = − ln F̄ (t), t ≥ 0.

Similarly, for {NG,λG
(t), t ≥ 0}, ΛG(t) =

∫ t
0 λG(u)du = − ln Ḡ(t), t ≥ 0. Therefore,

P (NF,λF
(t) ≥ n) = F (n)(ΛF (t)) = F (n)(− ln F̄ (t)) and P (NG,λG

(t) ≥ n) =

G(n)(ΛG(t)) = G(n)(− ln Ḡ(t)), n ≥ 1, t ≥ 0. If the transformed inter-arrival times
of {NF,λF

(t), t ≥ 0} are larger than those of {NG,λG
(t), t ≥ 0} in the usual stochastic

order, then, for x ≥ 0,

F̄ (x) ≥ Ḡ(x) ⇔ F (x) ≤ G(x) ⇒ F (n)(x) ≤ G(n)(x), n ≥ 1,
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and, for t ≥ 0,

F̄ (t) ≥ Ḡ(t) ⇒ ln F̄ (t) ≥ ln Ḡ(t) ⇒ − ln F̄ (t) ≤ − ln Ḡ(t).

Therefore, F (n)(− ln F̄ (t)) ≤ G(n)(− ln F̄ (t)) ≤ G(n)(− ln Ḡ(t)), n ≥ 1, t ≥ 0,
which implies P (NF,λF

(t) ≥ n) ≤ P (NG,λG
(t) ≥ n) , n ≥ 1, t ≥ 0 ⇒ NF,λF

(t) ≤st

NG,λG
(t), t ≥ 0.

To prove the converse, let

NF,λF
(t) ≤st NG,λG

(t), t ≥ 0 ⇒ P (NF,λF
(t) ≥ n) ≤ P (NG,λG

(t) ≥ n) , n ≥ 1, t ≥ 0.

For n = 1, we get

F (ΛF (t)) ≤ G(ΛG(t)), t ≥ 0 ⇒ F (t) ≤ G(t) and ΛF (t) ≤ ΛG(t), t ≥ 0.

Note that, by definition, F (t) ≤ G(t) ⇔ ΛF (t) ≤ ΛG(t), so that F̄ (t) ≥ Ḡ(t), t ≥ 0,
completing the proof.

The following results compare a TRP with that generated by the equilibrium dis-
tribution, TRPs generated by F and exponential df and a TRP and an ORP.

Corollary 2.6. ÑF,λ(t) ≥st (≤st)NF,λ(t) iff F is NBUE (NWUE), where

{NF,λ(t), t ≥ 0} is a TRP with renewal df F and trend function λ(·) and {ÑF,λ(t), t ≥
0} is a TRP with renewal df as the equilibrium df of F and trend function λ(·).

Using Theorem 2.7 of Ghosh and Ravi (2024) and Lemma 1.1 the corollary follows
as Λ(t) is a non-decreasing function of t.

Corollary 2.7. If F is NBUE (NWUE), then NF,λ(t) ≤v (≥v)NE,λ(t), t ≥ 0.

Proof. By Lemma 1.1 and 1.2, it is enough to show that if F is NBUE (NWUE),
then NF (Λ(t)) ≤v (≥v)NE(Λ(t)), t ≥ 0, which follows from Remark 2.1 of Ghosh and
Ravi (2024).

Corollary 2.8. If F is NBUE (NWUE), then NF,λ(t) ≤v (≥v)NE(t), t ≥ 0 provided
λ(t) ≤ (≥) 1, t ≥ 0.

Proof. Enough to show that NF,λ(t) ≤v (≥v)NF (t), t ≥ 0 if λ(t) ≤ (≥) 1, t ≥ 0 and
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the proof follows using Remark 2.1 of Ghosh and Ravi (2024). We have, for n ≥ 1,

∞∑
i=n

P (NF,λ(t) > i) =

∞∑
i=n

P (NF,λ(t) ≥ i+ 1)

=

∞∑
i=n

Fi+1(Λ(t))

≤ (≥)

∞∑
i=n

Fi+1(t)(since λ(t) ≤ (≥)1 ⇒ Λ(t) ≤ (≥)t, t ≥ 0)

=

∞∑
i=n

P (NF (t) ≥ i+ 1)

=

∞∑
i=n

P (NF (t) > i) .

Hence NF,λ(t) ≤v (≥v)NF (t), t ≥ 0, and the proof is complete.

The following result compares two independent TRPs under variability ordering.

Corollary 2.9. If {NF,λ1
(t), t ≥ 0} and {NG,λ2

(t), t ≥ 0} are two independent TRPs
with µ =

∫∞
0 F̄ (t)dt =

∫∞
0 Ḡ(t)dt, where λ1(t) ≤ 1 ≤ λ2(t), t ≥ 0 and, F is NBUE and

G is NWUE, then NF,λ1
(t) ≤v NG,λ2

(t), t ≥ 0.

Proof. Let {NE(t), t ≥ 0} be a PP with rate 1
µ . Then by Corollary 2.8, F NBUE and

λ1(t) ≤ 1, t ≥ 0 imply that NF,λ1
(t) ≤v NE(t), t ≥ 0, and, G NWUE and λ2(t) ≥

1, t ≥ 0 imply that NG,λ2
(t) ≥v NE(t), t ≥ 0. Hence the proof.

The following result compares two independent TRPs with respect to the usual
stochastic ordering on the basis of ageing properties and variability ordering of the
generating rvs.

Corollary 2.10. Let {NF,λ(t), t ≥ 0} and {NG,λ(t), t ≥ 0} be two independent TRPs
with µ =

∫∞
0 F̄ (t)dt =

∫∞
0 Ḡ(t)dt and F ≥v G. Then NF,λ(t) ≤st NG,λ(t), t ≥ 0 iff F

is NBUE and G is NWUE.

Proof. By Corollary 2.6, NF,λ(t) ≤st ÑF,λ(t), t ≥ 0 iff F is NBUE and ÑG,λ(t) ≤st

NG,λ(t), t ≥ 0 iff G is NWUE. By Theorem 2.9 of Ghosh and Ravi (2024), F ≥v G ⇒
ÑF (Λ(t)) ≤st ÑG(Λ(t)), t ≥ 0. Therefore, by Lemma 1.1, ÑF,λ(t) ≤st ÑG,λ(t), t ≥ 0.
Combining these, the proof is complete.

3. Illustrations

The results are illustrated here with examples.

Example 3.1. Let {NF,λ(t), t ≥ 0} be a TRP with df F (t) = 1 − e−t2 , t ≥ 0 and
trend function λ(t) = 1

1+t , t ≥ 0, and let {NE(t), t ≥ 0} be a PP with rate 1
µ where

µ =
∫∞
0 F̄ (t)dt =

√
π
2 . Then the pdf corresponding to df F is f(t) = F ′(t) = 2te−t2 , t ≥

0 and (ln f(t))′′ = − 1
t2 − 2 < 0, t ≥ 0 so that f is log-concave and hence F is also
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log-concave (Bagnoli and Bergstrom, 2005). Using the ageing class relationship, log-
concave ⇒ IFR ⇒ NBU ⇒ NBUE, F is NBUE. Since λ(t) ≤ 1, t ≥ 0, and F is NBUE,
by Corollary 2.8, we get NF,λ(t) ≤v NF (t) ≤v NE(t), t ≥ 0.

Example 3.2. Let {NF,λ(t), t ≥ 0} be a TRP with df F and trend function λ(t) = 1+
t, t ≥ 0. Since λ(t) = 1+ t ≥ 1, t ≥ 0, by Corollary 2.8, we get NF,λ(t) ≥v NF (t), t ≥ 0.
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Appendices

Appendix A. A few definitions:

Let X and Y be two nonnegative independent rvs with respective dfs F (·) and G(·),
survival functions (sfs) F̄ (·) and Ḡ(·), hazard rate functions rX(·) and rY (·), reversed
hazard rate functions qX(·) and qY (·).

30



Asian Journal of Statistical Sciences S. Ravia and Suman Kalyan Ghoshb

(1) For any continuous non-negative rv X, we define its hazard rate function and re-

versed hazard rate function as rX(t) = f(t)
F̄ (t)

and qX(t) = f(t)
F (t) , t ≥ 0 respectively,

where f(·) denotes the pdf of the rv X.
(2) X is said to be larger than Y, in the usual stochastic order denoted by X ≥st Y,

if F̄ (t) ≥ Ḡ(t), t ≥ 0.
(3) X is said to be larger than Y in the hazard rate order, denoted by X ≥hr Y, if

rX(t) ≤ rY (t), t ≥ 0, or equivalently if F̄ (t)
Ḡ(t)

is non-decreasing in t.

(4) X is said to be larger than Y in the reverse hazard rate order, denoted by

X ≥rh Y if qX(t) ≥ qY (t), t ≥ 0, or equivalently if F (t)
G(t) is non-decreasing in t.

(5) For two continuous non-negative independent rvs X and Y with respective pdfs
f and g, X is larger than Y in the sense of likelihood ratio, denoted by X ≥lr Y,

if f(t)
g(t) ↑ t, t ≥ 0.

(6) For two continuous non-negative independent rvs X and Y, X is said
to be stochastically less variable than Y, denoted as X ≤v Y, if∫∞
t F̄ (x)dx ≤

∫∞
t Ḡ(x)dx, t ≥ 0.

For two discrete non-negative independent rvs X and Y, X is said
to be stochastically less variable than Y, denoted as X ≤v Y, if∑∞

k=n F̄ (x) ≤
∑∞

k=n Ḡ(x), n = 0, 1, . . . .
(7) X and the corresponding df F are said to be increasing failure rate (IFR) if

rX(t) ↑ t.
(8) X and the corresponding df F are said to be New Better than used (NBU) if

F̄ (s+ t) ≤ F̄ (t)F̄ )(s), t ≥ 0, s ≥ 0.
(9) X and the corresponding df F are said to be New better than used in expectation

(NBUE) if
(a) X has finite mean µF =

∫∞
0 F̄ (x)dx,

(b) F̄ (t) ≥ 1
µF

∫∞
t F̄ (x)dx, t ≥ 0.

(10) A real valued function f is said to be concave (convex) if for any x, y ≥ 0 and
for any α ∈ [0, 1],

f((1− α)x+ αy) ≥ (≤)(1− α)f(x) + αf(y).

If f is twice-differentiable, then f is concave (convex) iff f
′′
is non-positive (non-

negative).
(11) f is said to be log-concave (log-convex) if log f is concave (convex).

The dual stochastic orders/classes are defined by reversing the inequalities.

Appendix B. A few relationships among the stochastic orders:

(1) X ≥hr Y ⇒ X ≥st Y
(2) X ≥lr Y ⇒ X ≥hr Y and X ≥rh Y (and therefore, X ≥st Y )
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